• Zero tolerance mode in effect!

контрбатарейная борьба

К чему ж такое? :) Не по карману. Пока. И неэффективно там. Там Су-24 сбили как-то наш.
Что-то вот и в Афгане американцы недолго их применяли. Сейчас бомбардировка по разведанным целям. Обычно у них по свадьбе получается. И когда они просекут, что так им дезу местные сливают - конкурентов замочить. Наииивные, как дети. :)
Восток - дело тонкое, Петруха! (с)
Это еще Сухов знал.
 
почему СССР не поставляло их арабам?
По той-же причине, по которой Скады летели куда сами хотели. Практически все совкове оружие, на экспорт шло с заниженными характеристиками и не во всех опциях, а некоторыми вещами принципиально не торговали. То-ли "на всякий пожарный", то-ли себе фору оставляли на случай повышения требований заказчика.
Кстати, кто сказал "простые", довольно покрученная конструкция.
Теперь ясно. Вы пользуетесь устаревшим названием из словаря словарями примерно 100-летней давности.
Зато Ваш словарь отличается новизной. Где, кроме музея, Вам встречались конкректно "осколочные" или "фугасные" снаряды? А другой словарь сколькилетнейдавности? Да и термины, вроде, переименовывать не принято. Словом "патрон" пользуются уже 200 лет и что?
Кстати, насчёт установки взрывателя на О или Ф действие - это относится к ОФ снарядам.
К чему это? Где-то указывается обратное? (хотя что есть обратое...)
Вопроса Вы не поняли, а в том что я разговариваю сам с собой - почему-то почти уверены.
А Вы стесняетесь? Я и сам с собой разговариваю,(с умным человеком отчего не посоветоваться) иногда очень помогает лучше разобраться в предмете.
Шутка.

А проблема следующая: снаряд летит по баллестической траектории на дальность 10-20 км (сегодня и до 30 и более, для 155-мм орудий). Необходимо подорвать его на высоте несколько метров над землёй. Если опоздать - ДВ уже не нужен, хватит контактного. Если подорвать слишком рано - не добьёшься эффективного рассеивания осколков. Временной задержкой тут не обойтись. Нужно ставить на снаряд ДВ, способный автономно "почувствовать" приближение земли.
Скажем так, от нескольких до нескольких десятков метров. Величина "эффективного рассеивания осколков" как таковая от времени разрыва и удаления цели не зависит. А эффективность огня определяется (в данном случае) скорее суммарной густотой осколочного поля формируемого (надеюсь Вам известно) групповым огнем. Точность трубок неплохая, и даже не имея возможности наблюдать за результатами стрельбы, за счет разбега в установке задержки можно обеспечить достаточное колличество правильных разрывов. Это уже скорее вопрос уровня подготовки.
 
К чему ж такое? Не по карману. Пока. И неэффективно там
К чему это нужно ? Так к теме этого топика.
105мм сверху осколочно-фугасным неэффективно.
Гораздо лучше осколками сверху сыпать. Для этого и делают.
Одно из требований - недорогой и надёжный.
Если берут за оцнову фьюз от 120мм мины - значит есть таких навалом.
Не знаю насколько у нас распространены такие взрыватели для мин и снарядов.
Есть артиллеристы на форуме ?
 
Стас, пыль замучаетесь глотать, пристреливая шрапнель. Быстро и хорошо тут могут только асы на ровном месте. :)
А РЛ - очень запросто.
 
К чему это нужно ? Так к теме этого топика.
В смысле реплика к чему? Вроде это и так известно и упоминалось уже...
РЛ вещь хорошая ничего не скажешь. Однако как у них с помехозащищенностью?
 
Я исправил топик.
Относительно помехозащищённости не знаю - можно почитать в требованиях.
Я думаю в данное время глушением РЛ взрывателей особо не занимаются.
 
А вообще (возвращаясь к теме однако), если вражина уже стреляет, то самое разумное решение забиться поглубже, а когда координаты известны, то тут уж дело нехитро можно и простыми ОФ все перепахать, или авиацией проутюжить. Хотя артиллерия все же несравненно дешевле, да и время реакции на порядок отличается.
А как вообще в АОИ дела с пушкарями? В смысле подготовка там и пр? А то уже вроде все рода войск встречались, даже подводник один, а артиллеристов днем с огнем.

Наверное мало их осталось...
 
Их много, тока скромные ... Есть такая фраза времен Ливана: "Артиллеристы как Яйца - в процессе участвуют, но внутрь не входят..." :) :D :D :p
 
Вообще читал, что нехило поучаствовали в йомкипур, а после где-то применялись?
 
На флоте (РФ) радиовзрыватели есть ко всему, включая 30 мм. Серьезно. Причем они древние, как мамонты и давно несекретные.
Начиная с 57 мм есть дистанционные. (Основной способ стрельбы - на сопровождение).
Помехозащищенность - как у взрывателей ракет :)
 
Хотя почему ты считаешь неэффективность египетской артиллерии отличается от другой. В то время у всех не было дистанционных взрывателей для полевой артиллерии, д и сейчас не особо имеем.
Это не я считаю. Была статья о египетской артиллерии в войне 1973г. Если правильно помню - журнал "Маарехот", конец 70-х или начало 80-х г.г. Израильская артиллерия там не обсуждалась.
 
По той-же причине, по которой Скады летели куда сами хотели.
У БР "Скад" точность изначально была плохая (КВО = 1 км), а против Израиля применялась иракская "Аль-Хусейн" и "Аль-Абас" с ещё более низкой точностью (КВО около 3-5 км). Так что пример неудачен.

Практически все совкове оружие, на экспорт шло с заниженными характеристиками и не во всех опциях, а некоторыми вещами принципиально не торговали. То-ли "на всякий пожарный", то-ли себе фору оставляли на случай повышения требований заказчика.
Кстати, кто сказал "простые", довольно покрученная конструкция.
Это всё так, но насчёт ДВ (в смысле - РВ) скорее причина куда более проста - их просто небыло, или они были новыми и очень дорогими, и поставлять их Египту (т.е. дарить) резона небыло. Кстати, кто-нибудь знает историю РВ для снарядов полевой артиллерии в СССР?

Зато Ваш словарь отличается новизной. Где, кроме музея, Вам встречались конкректно "осколочные" или "фугасные" снаряды? А другой словарь сколькилетнейдавности? Да и термины, вроде, переименовывать не принято. Словом "патрон" пользуются уже 200 лет и что?
Вы сами привели 2 ссылки. 1 - 100-летней давности, вторая - явно 90-е г.г. И именно вторая называет "бризантные снаряды" устаревшим термином. Тут не вопрос новизны термина. Термин может иметь 100- и 200- и 1000-летнюю историю и всё ещё нести свой смысл. А есть термины, свой смысл теряющие. Например, в конце 19- начале 20-го в.в. малокалиберные казнозарядные орудия с унитарным патроном называли "скорострельными пушками". Понятно, что с появлением автоматических пушек термин "скорострельная пушка" устарел. Т.е. его использование без подчёркивания того, что речь идёт об устаревшем термине - неуместно. То же и с бризантными снарядами.

Что касается осколочных и фугасных снарядов, то в полевой артиллерии они действительно вышли из употребления, в связи с исчезновением малых и крупных калибров. А для мин, гранат, авиационных бомб - вполне используются.

Скажем так, от нескольких до нескольких десятков метров. Величина "эффективного рассеивания осколков" как таковая от времени разрыва и удаления цели не зависит. А эффективность огня определяется (в данном случае) скорее суммарной густотой осколочного поля формируемого (надеюсь Вам известно) групповым огнем. Точность трубок неплохая, и даже не имея возможности наблюдать за результатами стрельбы, за счет разбега в установке задержки можно обеспечить достаточное колличество правильных разрывов. Это уже скорее вопрос уровня подготовки.
По-видимому такое решение приемлимо при использовании очень больших количеств артиллерии и наличия огромных запасов снарядов. На Западе такой подход не используется, поэтому и пытаются наращивать эффективность артиллерии, в частности за счёт ДВ (в смысле, РВ).
 
К чему это нужно ? Так к теме этого топика.
105мм сверху осколочно-фугасным неэффективно.
Гораздо лучше осколками сверху сыпать. Для этого и делают.
Одно из требований - недорогой и надёжный.
Если берут за оцнову фьюз от 120мм мины - значит есть таких навалом.
Не знаю насколько у нас распространены такие взрыватели для мин и снарядов.
Есть артиллеристы на форуме ?

РЛ взрыватели в принципе есть...удовольствие не намного дороже чем электроные с задержкой.
 
Электронные взрыватели с задржкой должны стоить копейки - по сути это одна миросхема, как в часах стоимотью в 1$.
 
Я думаю в данное время глушением РЛ взрывателей особо не занимаются.
3 года назад была большая статья в JIDR как раз на эту тему:

Fuzes seeking more power
INTERNATIONAL DEFENSE REVIEW - MAY 01, 2001
Rupert Pengelley

Many issues are driving new developments in the tube artillery fuzing field writes Rupert Pengelley

The requirement for precision in long-range engagements has led to the introduction of a new generation of 'smart' GPS (Global Positioning System)-based fuzes. Power supply has become a critical design issue in the new generation of electronic fuzes. As one industry observer told IDR, "projectiles fly further, and today's more 'elegant' fuze demands higher capacity and a very fast call on that power. In GPS fuzes it is necessary to synchronize timing and to maintain that timing in order to derive the requisite accuracy: you have to maintain the power rather than use a volatile memory. Aboard guided munitions the power demands are even greater, since they offer a very small space and include power-hungry subsystems such as motorized control surfaces."

In order to reduce the overall incidences of unexploded projectiles or 'blinds', self-destruct reliability standards are being pushed ever harder by approvals agencies - and not just for the submunitions, whose demonstrated dud rates in conflicts over the past 20 years have left a highly publicized and lethal legacy of 'dirty' battlefields. Research is now being conducted into electronic or in-line (rather than out of line) safety and arming units (SAUs), prospectively offering higher performance, reliability and safety.

Among other potential benefits, micro-electromechanical system (MEMS) technology represents a significant opportunity to distribute fuze functions. A single point of initiation might not always give the optimum lethality and, rather than having to opt for front-end 'screw-in' solutions, it could for example, be possible to remote the detonator from the fuze. This might be useful in a MOUT (military operations in urban terrain) environment, where base initiation of an HE (high explosive) projectile payload could be more effective if it served to canalize the majority of the detonation blast in the direction of flight rather than rearwards.

The 'MEMS-ing' of timers and inertial sensors could also help to diminish power demands, but caution can work against innovation. While use of newer technology might allow a reduction in size, as the observer put it, safety and approvals agencies "tend to get very excited about having an all-new design". Consequently advances in fuze design are more likely to be evolutionary rather than revolutionary.

The introduction of unit load containers and multi-option fuzes for artillery (MOFA) has meant pre-fuzed rounds have already become the norm in some countries, and they are likely to become more prevalent with the increased automation of howitzer operation. For high-mobility rapid-reaction applications the merits of having pre-fuzed rounds are clear, but less so in a peace support operation. In any event, standard operating procedures and standardization in general self-evidently contribute to increased safety in operation, particularly in a coalition context. Be that as it may, the users' best standardization efforts could yet be defeated by semantic confusions. (Typically in the US the word 'fuze' signifies SAU, whereas a 'target detection device' [TDD] is elsewhere thought of as a fuze.) More lethally consequential, there are also different interpretations of 'safe' arming distances - these can range anywhere from 60-300m.

Smart fuzing

'Smart' fuzes combine standard detonation functions with course-correction capability. Though likely to be significantly more expensive than conventional types, the normal arguments in favor of smart or course-correcting fuzes are that better accuracy leads to improved lethality, reduced collateral damage, and reduced ammunition expenditure. The latter in turn leads to improved logistics and savings in acquisition cost.

Cost is also saved by virtue of smart fuzing's applicability to existing stockpiles, and the potential benefits are not confined to dumb munitions. Payoffs are also to be had with projectiles carrying terminally guided submunitions, in that more accurate placement of the latters' sensor footprints commensurately improves submunition hit-probability and hence the number of armored targets that can be killed per round.

Course correction may be applied to range or line errors, or both - in the latter case the smart fuze being defined as a '2D' solution. In principle the mechanisms for correction can be implemented either in the fuze volume or in the body of the projectile. For the time being, the latter configuration is the only workable solution for 2D correction (as in the case of the XM892 Extended-Range Guided Munition [ERGM]), the necessary power and battery technology not being sufficiently developed to enable the required components to fit within the standard fuze volume.

Developers outside the US have followed the early inclinations of their American counterparts, focussing their efforts on 1D (range-correcting) fuzes as the most cost-effective source of accuracy enhancement. AOP22/STANAG 4369 sets out the protocol and power requirements for inductive setters for standard fuzes, but given the increasing number of GPS-based fuze and projectile guidance systems that are emerging, (among others in France, Germany, Israel, the UK and the US), the NATO Fuze Group is drawing up a new standard specifically applicable to these.

Though smart fuze accuracy improvements are most marked at the longer ranges (in excess of 30km), in peace support operations it can be argued any improvement in accuracy is significant, even that to be gained at the short and medium ranges. That said, under extreme meteorological conditions it is possible deployment of a range-correcting drag brake could actually be counter-productive at extended ranges, since the longer the brake is open, the more that crosswinds could be brought to bear upon it, increasing rather than decreasing dispersion in azimuth.

Of the European companies engaged in fuze work, Germany's Junghans Feinwerktechnik (part of Diehl VA Systeme) is the largest, its output of 200,000-250,000 units of all types per year putting it in a similar production bracket to its principal US counterparts (ATK, KDI). One difference between these and Junghans is that the latter carries out its own research and development, without relying on a government agency to do this for it (although government funds underwrite around half the cost, the company admits).

This in-house capability gives the company an advantage in meeting urgent operational requirements, typically in one recent case achieving pilot lot acceptance within 18 months of a requirement being raised for a flick rammer-compatible mechanical point detonating (PD) super-quick (SQ)/delay fuze. This it now sells as the PD544.

The Junghans artillery product range includes electronic and mechanical types. Among the former is the DM74 multi-option fuze for artillery (MOFA), which it claims was the first third-generation MOFA design to be successfully fielded (1997). It is one of three used aboard the German Army's PzH2000 howitzer which was accepted for service in 1998 (see p31), and has since been adopted by the Canadian and Danish armies (in the former case under the designation C32). It embodies four fuzing functions (prox, time, PD, PD-delay) and is inductively set. The time function is principally a safety mechanism, preventing the proximity RF function from being activated until three seconds before the computed end of the time of flight.

Minimum arming distance is 150m (but nearer 200m, according to Junghans). In the event of jamming when operating in the proximity mode, the DM74 is designed to default to PD mode. Its proximity fuze radome is compatible not only with 105mm accelerations (the DM74 is used in Canada in conjunction with the Giat LG1 Mk2), but also with 52-caliber times of flight. In the latter case the erosive effects of precipitation can become more pronounced, but careful choice of materials for the injection-molded radome helps to overcome these, according to Junghans.

The DM74 embodies a manual means of setting proximity or PD modes, but (despite outward appearances) this has been dispensed with in a new version designated DM84, that features only inductive setting. The DM84 is being developed for the Netherlands Army, which requires a fuze compatible with 155mm artillery rounds and 120mm rifled mortar rounds. For mortar applications the DM84 has a second (lower) height of burst (4/10m), and a longer delay (50ms, instead of 10ms).

The setback forces in a mortar are significantly lower than in an artillery system, making it harder to activate a reserve cell battery. As well as functioning correctly for low-zone mortar firings, the same fuze must also remain safe in a 1.5m drop test. Consequently, the company has jointly commissioned Diehl and Eagle-Picher to develop a new lithium battery, whose novelty lies in its triggering concept. It is planned to be fitted in the DM52A2, DM84 and all future fuzes. The DM84 will be qualified by the German Bundesamt für Wehrtechnik und Beschaffung (BWB) procurement agency later this year, with series production beginning in the autumn.

The Junghans DM52A1 electronic time (ET) fuze has been adopted by the Danish, Finnish, and German armies for smoke, illuminating, and cargo round applications (including SMArt 155). The A2 version has no manual setting mode (inductive only), allowing substitution of a reserve battery for the permanent battery used in the A1, which has to be replaced every five years.

The company's latest mechanical fuze, the PD544, is based on the US M557 PD fuze design (DM241 in German Army service). The new version embodies the SAU originally developed for the DM74, and is 52-caliber, base-bleed, and flick-rammer compatible (minimum set forward 8,000g). It has a minimum 150m safe arming distance, and improved rain safety compared to the M557, which is more susceptible to early bursts through impacts with heavy raindrops or jungle canopies.

As noted by the French Army when providing fire support to UNPROFOR in Bosnia in August 1995, engaging tanks located in the ground floor of domestic buildings is not easy when using multifunction fuzes. The latter's delay function is rendered inoperative if the associated electronic circuitry is not protected during penetration of the roof and upper floors. The necessary robustness is easier to achieve with older mechanical fuze designs. Junghans has one such fuze, the DM371 developed 15 years ago for a German Army MOUT requirement. This concrete-piercing PD/Delay design has a 50-60ms delay.

Hybrid technology

For its future designs Junghans is pursuing a hybrid technology exploiting MEMs assemblies in conjunction with metal injection molding. The latter is a technique widely used for civil applications that gives a precision finish without surface treatment. Junghans is also engaged on the fuzing aspects of 1D and 2D course-correction studies being conducted in conjunction with a sister Diehl company. Of relevance is Junghans' work on miniaturization of detonation trains, leading to their integration within SAUs. This potentially reduces space requirements by two orders of magnitude, the reduction in mass allowing more intelligence to be incorporated, and permitting higher accelerations.

Smart fuzing has its echoes in Israel, where IAI's MLM division has been conducting studies on a Compact Fire Adjustment System (CFAS - see IDR 8/1999, p16). This exploits a GPS registration round fitted with a translator that relays GPS C/A code signals received in mid flight to the CFAS ground station. The latter uses differential correction methods to calculate the difference between the planned and actual trajectories of the projectile, which can then be factored into the firing data for subsequent rounds.

The leading fuze supplier in Israel is Reshef Technologies, which in 1999 introduced a new proximity fuze called the Omicron M180, claimed to be suitable for use with NATO artillery and mortar projectiles with a thread size of 2in (50mm). It can be fitted to all NATO-standard high-explosive and white phosphorous artillery projectiles with calibers of 105mm, 155mm, 175mm and 203mm as well as projectiles fired from 4.2in or 120mm rifled mortars, being fully interchangeable with the existing M51, M557/M572, M739/M739A1 and equivalent PD artillery fuzes. The fuze has two settable modes, proximity (PRX) and PD, a backup PD function being provided for the proximity mode. It embodies a time-gated frequency modulated continuous wave (FMCW) radar sensor, which is claimed to give a constant height of burst of 9m above the target.

The Omicron M180 complies with MIL-STD-1316D and STANAG 4187 safety standards and is also radio frequency interferometer/electromagnetic radiation (RFI/EMR) resistant. Its two independent arming mechanisms have a minimum setback force of 50g and a minimum spin rate of 1,600rpm respectively. The electronic timer has a 0-150s setting range, and arms the proximity circuitry 1.8s before the set time. It is designed to operate in all weather conditions and will not be activated by clouds, haze, thunder, sand storms, snow or rain. A variant called the Epsilon M139 is available for use with Russian and Chinese caliber artillery and mortar projectiles, which have a different size of fuze well.

The companion Delta M137 ET fuze similarly has the Zeta M138 ET fuze as its counterpart for Chinese and Russian ammunition systems, and is produced by Chartered Electronics Industries in Singapore as the EF-784 ET fuze. It is set manually in 0.1s increments using three setting rings, the setting range being 3-199.8s and the standard deviation of the delay error less than 0.1s. A PD/SQ (super quick) function can be selected by placing the setting rings on 199.9s.

For standard rounds the M137 is produced to function in detonating mode, having a container incorporating a 27g CH-6/A5 charge threaded onto the fuze base. For use with payload rounds the M137 is instead fitted with a 258mg RDX charge, the fuze electronics in either case being inhibited until four seconds before the set time. Its SAU requires a minimum setback force of 50G and a minimum of 1,200rpm of projectile spin to be activated, the safe separation distance being 400 calibers.

The latest MOFA to emerge from Fuchs Electronics of South Africa, the M9801A1, was originally developed jointly with LIW for the LEO G7 105mm howitzer (see IDR 9/2000, p40-41) but is also compatible with 155mm systems. It has an additional programmable delay facility, which distinguishes it from the earlier M9121 MOFA whose modes include proximity (with three burst heights - 5/10/15m in the case of the M9121, and 4/7/10m in the case of the M9801A1), plus PD/SQ and time functions. (The companion programmable delay fuze for the M9121 was Naschem's M841.)

Both are inductively set, but the M9801A1 uses the NATO STANAG 4369 protocol while the M9121 uses a proprietary Fuchs protocol. The M9801A1 also retains manual setting options (using factory-set presets), including proximity, delay, point detonating functions. The time setting range extends to 199.9s, sufficient to cover the time of flight of the 50km + range Velocity-enhanced Long-range Artillery Projectile (VLAP) fired from extended range 45 or 52-caliber ordnance systems (peak velocity 1,100m/s).

The M9801A1 is part of Fuchs' range of 'new generation' STANAG and MIL-STD compliant electronic artillery fuzes unveiled at the African Aerospace and Defence 2000 exhibition. The others in the range include the M9802 electronic point detonation delay (PDD) fuze, the M9803 ET fuze, and the M9804 ET fuze. The latter differs from the M9803 in having a manual time setting facility, activated by means of two buttons and a display on the fuze body.

All use common SAU, reserve battery, and software-controlled microprocessor electronics, and are normally set with a handheld M22 programmable induction setter, which has sufficient battery life to allow 2,000 setting or fuze-interrogation operations. An additional auxiliary power supply enables the M22 to be connected to a 10-30V vehicle power supply. The basic building blocks of the M22 can alternatively be repackaged into autoloader or central fire-control systems.

Of its earlier fuzes, the Fuchs M8513-series dual-option (programmable proximity/PDSQ) fuze is now being made under license in India by ECIL, with the M85P13A1 version for 105mm, A2 for 130mm, and A3 for 155mm projectiles. These use the same M15A2 setter as the M85P13T1 (105mm), T2 (130mm), and T3 (155mm) time fuzes, also now made by ECIL. The last of these has essentially the same characteristics as the Fuchs M9220 ET fuze, which is geared to South African rather than NATO 155mm ammunition types and has a slightly higher muzzle velocity limit (1,150m/s as opposed to 1,050m/s).

Fuchs representatives highlight the fact that much of their initial fuze development experience is related to 45-caliber ordnance systems. They are inclined to suggest most European fuzes "would fall over in 45-caliber systems, which give a much harder ride than 52 caliber...we learned some hard lessons". Equally, the earlier adoption of base-bleed ammunition by South African forces gave the company an additional decade of operational exposure to the delinquency and stabilization problems that its employment induces (typically, sputtering at the end of the base bleed burn sets up microphonics in the fuze).

Proximity sensing

In contrast to developers in other countries, Fuchs is staying with Doppler RF proximity sensing. "We are growing out of FMCW - we walked away from it in 1987, and are now in our sixth or seventh-generation development curve. We use very advanced signal processing rather than changing the emitters." Jammers such as the US Army's AN/VLQ-11 Shortstop could not find the center frequency, nor could they generate enough energy at the required frequency, Fuchs believes.

The British Army's artillery has lately been surviving on a range of fuzes with a minimum 20-year design history. However, things could soon change under the auspices of the TACAS (Tubed Artillery Conventional Ammunition System) program, the requirements for which were promulgated last July.

Among other elements, TACAS embraces the Future HE projectile, a new fuze setter/initialization equipment, an artillery fire improved dispersion system (AFIDS), muzzle velocity and temperature measurement, bi-spectral smoke and illuminating shells, new or improved packaging, platform integration aboard the AS90 155mm self-propelled howitzer and the gun variant of the Light Mobile Artillery Weapon System (LIMAWS-G), and asset tracking systems. BAE Systems was expected to be awarded a contract in April to act as the prime systems integrator for TACAS, with the assessment phase running until 2003 and the in-service date being 2005.

As a private venture BAE Systems has for some years been working on a multipurpose fuze (MPF) as a potential successor to the L116 Multi-Role Fuze (MRF), which was developed in the late 1970s by its Royal Ordnance (RO) subsidiary in conjunction with Thorn EMI (now part of Thales). Though keen competition can be expected from Junghans with its DM84 fuze, MPF must be considered a leading contender for the TACAS Future HE shell fuzing requirement.

In contrast to the MRF, which has only Doppler proximity and PD functions, the new MPF (see IDR 2/1997, p39-41) is described by RO's Dennis Hickey as "a genuine multipurpose as opposed to multirole fuze, with a true post-impact delay [PID] function. A normal proximity sensor has a plastic nose and a weak internal structure which are destroyed on impact. This prevents standard proximity fuzes from functioning in post impact modes, making troops in trenches or protected by buildings the hardest for them to hit."

The MPF is modular, embodying a new sensor in combination with a proven SAU and a new battery module, both protected behind a 15mm steel barrier. Therefore "the MPF will survive whatever the shell can survive", according to Hickey. The L8 SAU has been in safe service for 15 years (exhibiting no flick-rammer problems), but whereas it originally cost £82 [US$116] to make, it is now made under license by Micron Industries in India for only £15. The battery module is a joint venture with Thales (Signaal), integrating the PD switch, firing circuit, post impact delay, and self-destruct timer board with the Thales lithium reserve cell.

Sensing is based upon FMCW rather than Doppler radar emissions, the MPF sensor functioning as an altimeter as opposed to aproximity detector. It is unaffected by ground conditions, unlike Doppler which has an irregular burst height and is also regarded as more vulnerable to jamming. The FMCW emitter is a very low energy device (output 3mW), and in the longer term its design lends it to activation heights of 500-1,000m, as might be needed for future long-range payload rounds.

Its four functions (Prox, PID, PD, Time) are inductively set using a battery-powered setter that can be plugged into a vehicular power supply and printer. While the Time function (up to 199.9s) is included principally for gating purposes, it is also a settable mode, a feature that could for example be useful in giving howitzers with integrated fire-control facilities a capability for self-defense against helicopter attack. The self-destruct may be varied in line with customer requirements, 200s being the minimum and 250-300s probably the maximum to avoid risk of injury to troops following up an artillery barrage.

Though SAUs and reserve batteries have long lives, in any fuze the electronics unit can become outdated. The MPF's modularity not only permits mid-life upgrading, but also reduces testing costs as the number of proof firings needed is reduced. A cheaper ET-only version is also envisaged for carrier-shell applications. Use of an FMCW emitter in the standard version enhances the MPF's electronic counter-countermeasure (ECCM) robustness, according to Hickey, since its spot energy is reduced. "The mimicking of fuze functions is quite easy to do, so the lower the output the better." The MPF's upgradeability is also an ECCM feature, Hickey believes.

Testing of the MPF's PID function was successfully conducted at Shoeburyness in November 1999. Since then the majority of its remaining functions have also been subjected to internal testing, and final qualification (including the proximity sensor) is anticipated at the end of this year.

The frontrunner for the TACAS AFIDS requirement is the 1D (range-correcting) smart fuze under development by Team STAR (see IDR 8/2000, p46-47), a consortium comprising Thales Missile Electronics (TME), BAE Systems/RO, the UK Defence Evaluation and Research Agency (DERA), and Rockwell Collins. Risk-reduction work is continuing, pending the outcome of TACAS studies, which would desirably lead to the start of full development. As a design that is autonomous once fired (having an integral processor in the fuze body that measures the actual trajectory against the predicted trajectory, and subsequently initiates drag brake deployment), the Team STAR solution is credited with a 'shoot and scoot' advantage over those that depend either upon a gun-based processor for course-correction computation, or an off-board sensor for trajectory measurement. These, including the Giat/Thales SAMPRASS and SPACIDO, the Celsius/Bofors Bromsa, and IAI CFAS, are likely to be cheaper since the intelligent portion is reused. However, they require the gun to stay in its fire position to 'talk' to the round for the duration of its time of flight, and there could also be some difficulty in conducting multiple-round missions as the system would have to talk to all the rounds concurrently. Team STAR's solution does not require line of sight to be maintained between the gun and the projectile, and would therefore function whether or not the gun was in hilly or urban terrain.

Jamming and spoofing

There is an underlying concern in artillery circles over the potential effects of jamming or spoofing on GPS-based systems, on which users increasingly are choosing to depend not only for munitions precision but also for navigation, survey, and communications synchronization purposes. A TME representative said that from the fuze designer's perspective GPS jammers would most likely be in close proximity to the target position, and that system activation could be controlled until within reach of the targets. A reference check could be made to denote (and discount) overt jammers, while spoofing might be difficult to effect without numbers of emitters being brought to bear on the fuze. Even in the absence of GPS inputs, a smart fuze could be pre-programmed to deploy its drag brakes.

The three main fuze producers in the US include ATK (Alliant Techsystems), Bulova and KDI. The latter is perhaps best known as the developer of self-destruct fuzes for bomblet munition payloads, but has been catapulted to center stage by winning the US Army's prime contract to produce the new STANAG 4369-compliant M773 MOFA. Together with the M762 ET fuze, it forms the basis of the US Army's new fuze family for time, impact, and proximity functions, the MOFA being used on all bursting artillery rounds, and the M762 for cargo rounds.

The associated M1155 Portable Inductive Artillery Fuze Setter (PIAFS) is STANAG 4369-compatible, and has been tested with some non-US fuzes such as the German DM52 ET design.

The M773 was originally developed by the US Army in conjunction with ATK, but the latter was outbid by KDI for the production phase. It combines proximity, time, PD, and delay functions, which can be inductively or manually set. (The M782 variant, also produced by KDI, has no manual setting option.) The M773 completed type classification testing in the last quarter of fiscal year 1997, and was followed two years later by the M782.

The PD setting functions in Super Quick mode, while the post-impact delay is 5-10ms. The proximity height of burst is billed as 9-10m over normal terrain, and the ET setting range 0.5-199.9s in 0.1s increments. The backup mode is PD impact. To comply with Crusader rate of fire requirements, the M773 can be inductively set within 1.5s for all modes, manual setting taking up to 20s for all modes using the integral setter ring and LCD display which is backlit for night operations. Acceleration limit is 30,000gs maximum and spin 30,000rpm maximum.

The minimum arming distance for 155mm applications is 65m. Its operating temperature limits are -42ºC to +62ºC. The pre-launch power supply (M773 only) has a 500ms activation time and a 100mA/h capacity, sufficient for a 15-day standby period while the 35mA/h capacity post-launch power supply supports a 50km maximum trajectory and 200s maximum time of flight.

ATK has produced more than 260 million fuzes of various types since 1951. Its current product range for 155mm and 105mm applications includes the M762 ET fuze and its M767 variant (which has a booster for use with HE projectiles, rather than base-ejection payload rounds), plus the M732A2. The latter is the proximity fuze currently used by the US Army and Marine Corps on howitzer bursting rounds, and uses a continuous wave RF Doppler signal. It has a backup PD function, and its limited 5-150s time gate reflects the fact that it was originally designed for 39-caliber ordnance systems.

Bulova also manufactures M762/767 ET fuzes, together with older mechanical types such as the M557A1 and M582A1 MT SQ (the latter being an M557A1 with a booster), and M739/739A1 point detonating fuzes. The latter has a mechanical impact delay function, and in its earlier version is now made in China by Norinco. Similarly the M557 is now offered for export by a widening circle of suppliers, among them Ammunition Industries Group of the Iranian Defence Industries Organisation. This also makes the M572 variant, whose ogive cavity is filled with epoxy resin to stiffen it so that it can withstand higher acceleration forces.

Included in the Iranian company's product range is the M203-A RF proximity fuze, which features an air-driven generator as its power source, making it suitable for extended-range firings and long storage. The SAU mechanism provides a minimum safe separation distance of 60m, with a minimum arming delay setting of 1.5s, variable up to 75s. The nominal height of burst is 8m, the proximity functional reliability being quoted as 80%.
 
И ещё:

SPR-2 radio fuze jammer
Date Posted: 19-Jan-2004

Type

Ground-based radio fuze jammer.

Description

Mounted on either an 8 × 8 BTR-70 or BTR-80 chassis, the SPR-2 is designed to detonate radio fuzed munitions at safe distances and thereby protect `first echelon' troop formations, command posts, missile launch sites and troop/matériel concentrations at river crossings from interdiction. As such, the equipment is claimed to be effective against `at least' 80 per cent of `known' radio fuzes (including those that incorporate anti-jamming channels). Elsewhere, the equipment is noted as incorporating automatic switch-off to guard against ghost signals detected in corresponding frequency channels within specific time intervals. SPR-2 is further described as offering a passive surveillance capability and a received signal frequency channel display as well as the ability to operate while `on the move'. Readers should also be aware that the Russian Federation has fielded at least one other radio fuze jamming system (designated as the SPR-1) which Jane's sources describe as covering the 180 to 305 MHz frequency band, as incorporating two transmitters with associated Yagi aerials, as being installed aboard a tracked GT-MU armoured personnel carrier and as being able to protect an oval area with a width of 750 m. The same sources suggest that SPR-1 has seen service with the armies of Bulgaria and Iraq as well as that of the Russian Federation.

Status

As of 2003, the status of the SPR-2 radio fuze jammer was uncertain.

Specifications

Frequency coverage: 95-420 MHz
Receiver sensitivity: -95 to -110 dB/W
Output: at least 300 W
Protected area: at least 50 hectares
Jamming capacity: at least 40 fuzes/s
Deployment/close-down time: up to 4 minutes
Power supply: 27 V DC (3 kW, integral)
Temperature: -40ºC to +50ºC (operating)
Crew: 2

Contractor

Gradient Research Institute
Rostov-on-Don.

Russian proximity fuze jammer is revealed
DATE: 01-May-2000
EDITION: 2000
VOLUME/ISSUE: 033/000

TEXT:
Information on a Russian counterpart to the US Army's AN/VLQ-11 Shortstop proximity fuze jammer (see IDR 12/199:cool: was disclosed at the TRIDEX 2000 exhibition held in Abu Dhabi in March this year.

Officially designated the SPR-2 wideband jamming station, the first examples are said to have been delivered to the Russian Army by the Bryansk Electromechanical Plant several years ago.

According to a company release, the SNR-2's area of coverage is between 200,000-600,000m2, many times that of its American counterpart.

The 500kg system, mounted in a BTR-70 or similar wheeled armored vehicle, can be used to provide area coverage for artillery batteries or vital sensor systems coming under attack from hostile artillery firing proximity-fuzed ammunition.

The jamming signal of the SPR-2 transmitter covers the V/UHF band (100-500Mz). It is said to be effective both in static situations and on the move, its hemispherical coverage causing shells to explode harmlessly at altitudes of around 400m.

Unit cost is approximately US$1 million. A company spokesman estimating that five systems would suffice to protect a division's worth of equipment, depending on how the division was deployed. RP

Briefs - Fuze jammer tie-up
Date Posted: 05-Sep-2000

Condor Systems and Hunting Defence are planning to team up on marketing and development of the Shortstop Electronic Protection System, now in service with the US Army as an artillery fuze jammer. Current versions include AN/PLQ-7 manpack, VLQ-11 vehicular, and GLQ-16 ground-mounted equipments. One likely future objective is the defeat of new-generation FMCW proximity fuzes.
 
И ещё:

http://www.vif2ne.ru/nvk/forum/archive/593/593780.htm

http://pravo2004.by.ru/allbase/y1990/m11/doc50639.shtm

К существующим типам бронетранспортеров-подобных относятся:

БТР-70 КШМ СПР-2 БРЭМ 3С-88 Х

http://www.vif2ne.ru/nvk/forum/archive/546/546591.htm

СПР Станиция Постановки Радиопомех, вызывает преждевремменый
разрыв снарядов(боеголовок) с радиовзрывателями

http://www.kvant.natm.ru/License.asp

Станция помех радиовзрывателям артиллерийских боеприпасов СПР-2 «Ртуть-Б» (индекс 1Л29)

http://www.gradient.aaanet.ru/news.htm

Особый интерес был проявлен к технике специального назначения (наземные станции помех СПН-2, СПН-4, СПР-2...
 
Электронные взрыватели с задржкой должны стоить копейки - по сути это одна миросхема, как в часах стоимотью в 1$.
Не совсем...там в добавок к микросхеме (которая должна выдержать перегрузки выстрела) есть еще хим источник питания (или турбина) которые должны быть работоспособны и после 30 лет на складе и непростая механика предохранителя которая взводит взрыватель только на каком то растоянии от дула пушки.

Сколько стоят хорошие надежные хронометры? ;)
 
А чему там не выдержать? Микросхема - монолит, сломать ее можно только ударив чем-то, если это вообще не пленка например. Что касается источников питания, то тут может быть масса вариантов - от простейших батареек, которые опять же ускорений выстрела не бояться и могут спокойно лежать лет по 10 (я говорю конечно не о том что можно купить в магазине - хотя и там есть подходящие образцы) и до индукционных или термических - заряжающих конденсатор питания при выстреле. И хронометы здесь ни при чем - это cовсем из другой оперы, хотя китайские часы за 1$ дают точность до 0.001 сек в режиме хронометра.
И в предохранителях тоже нет ничего загадочного или сложного.
Никаких проблем тут нет лет уже 30.
Вообще электроника сейчас проще, надежней и главное намного дешевле механики. Как инжинер-приборист вам говорю.
 
В взрывателях нет ничего загадочного ...но это все таки достаточно сложный механизм который должен обладать высокой надежностью даже при длительных сроках хранения в условиях далеких от лабораторных.
PS Электроника дешевле, но без механики там не обойтись.
 
Назад
Сверху Снизу